

Designated client product

This product will be discontinued its production in the near term.

And it is provided for customers currently in use only, with a time limit.

It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

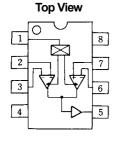
HIGH SPEED OPERATIONAL AMPLIFIER WITH SWITCH

■ GENERAL DESCRIPTION

The NJM2121 is a dual operational amplifier of 2-INPUT and 1-OUTPUT with analog switch. The NJM2121 can be used as analog switch under the condition of G_V =0dB, as Switch + Amp in order that each gain (A or B) can be adjusted independently. Each amplifier of the NJM2121 has the same electrical characteristics as the NJM4560.

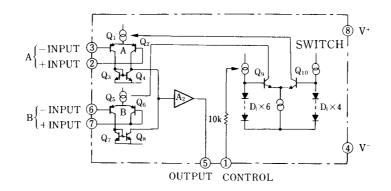
The NJM2121 is suitable for Audio, Video, Electrical musical instrument...etc.

■ PACKAGE OUTLINE


NJM2121D

NJM2121M

■ FEATURES


- Analog Switch Function
- Operating Voltage (±3V~±18V)
 Slew Rate (4V/µs typ.)
 Wide Unity Gain Bandwidth (14MHz typ.)
 Package Outline DIP8,DMP8
- Bipolar Technology

■ PIN CONFIGURATION

PIN FUNCTION
1.SW.CONTROL
2.A +INPUT
3.A -INPUT
4.V
5.OUTPUT
6.B -INPUT
7.B +INPUT

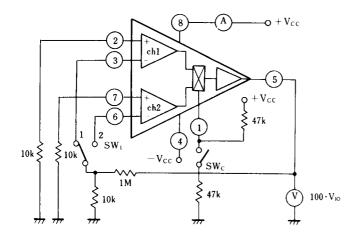
■ EQUIVALENT CIRCUIT

NJM2121

■ ABSOLUTE MAXIMUM RATINGS

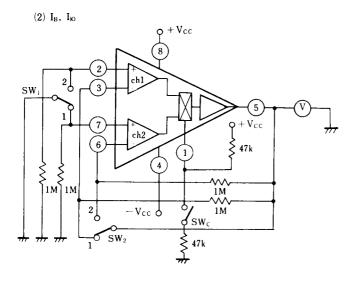
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 18 (36)	V
Differential Input Voltage	V _{ID}	± 30	V
Input Voltage	V _{IC}	± 15	V
Output Current	lo	± 50	mA
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

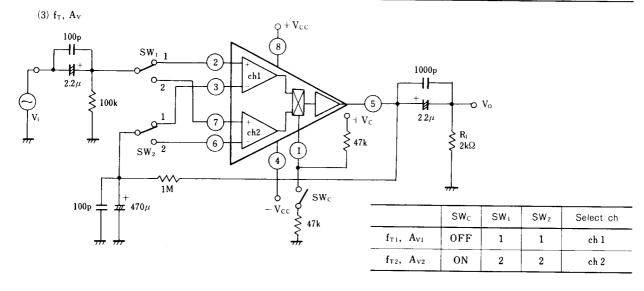

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

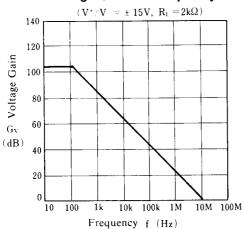
				(' '		<u> </u>
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	V _{IN} SW ON	-	2.3	6.0	mA
		SW OFF	-	2.1	6.0	mA
Input Offset Voltage	V_{IO}	$R_S=10k\Omega$	-	8.0	6.0	mV
Input Bias Current	I_{B}		-	0.2	1.0	μA
Large Signal Voltage Gain	A_{V}	$R_L=2k\Omega$	-	110	-	dB
Maximum Output Voltage Swing	V _{OM}	R _L ≥10kΩ	± 12	± 14	-	V
Total Harmonic Distortion	THD	f=1kHz,V _O =5Vms,G _V =20dB	-	0.002	-	%
Supply Voltage Rejection Ratio	SVR		-	20	150	μV/V
Channel Separation	CS	f=1kHz	-	82	-	dB
Unity Gain Bandwidth	f⊤	G _V =0dB	-	14	-	MHz
Slew Rate	SR	G_V =0dB,R _L =2k Ω //100pF	-	4	-	V/µs
Equivalent Input Noise Voltage	V_{NI}	R_S =1k Ω ,BW=10Hz~30kHz,Flat	-	2.0	-	μVrms


■ TEST CIRCUIT

(1) $I_{c\,c},\ V_{io},\ SVR$

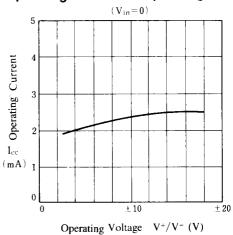

	SWc	SWı	Select ch
I_{CC1} , V_{IO1} , SVR_1	OFF	1	ch 1
I_{CC2} , V_{102} , SVR_2	ON	2	ch 2

 $\begin{array}{ccc} Unit & Resistance: \Omega \\ & Capacity & : F \end{array}$

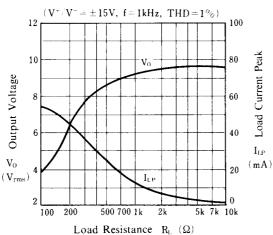

$$I_{B}^{+} = V_{O}^{-}/1M\Omega$$

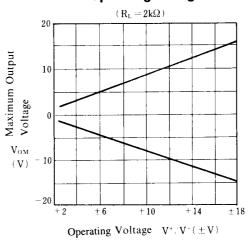
 $I_{B}^{-} = V_{O}^{-}/1M\Omega$
 $I_{IO} = |I_{B}^{+} - I_{B}^{-}|$

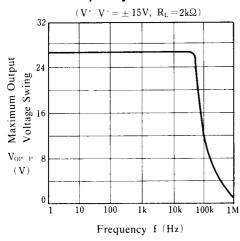
	SWc	SWı	SW ₂	Select ch
V_{o_1}	OFF	1	1	ch 1
Voi	OFF	2	2	ch 1
V ₀₂	ON	2	2	ch 2
Vo2	ON	1	1	ch 2

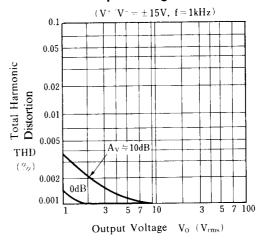


■ TYPICAL CHARACTERISTICS

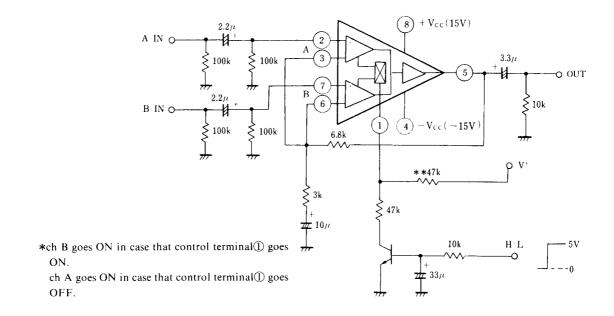

Voltage Gain vs. Frequency


Operating Current vs. Operating Voltage

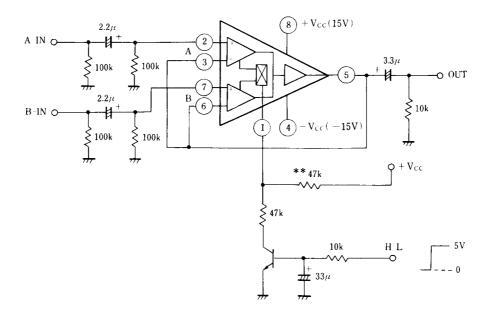

Output Voltage, Load Current Peak vs. Load Resistance


Maximum Output Voltage vs. Operating Voltage

Maximum Output Voltage Swing vs. Frequency

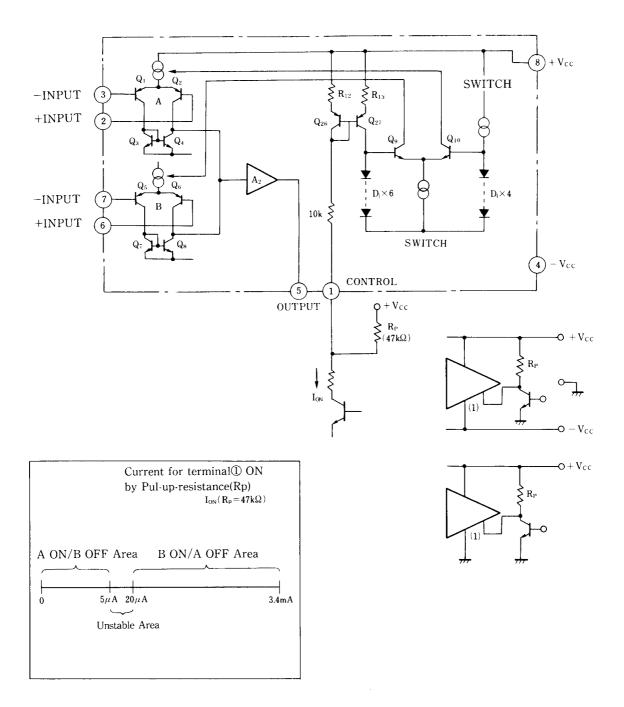


Total Harmonic Distortion vs.Output Voltage



■ APPLICATION CIRCUIT

(1) G_V=10dB FLAT Amp+Analog Switch Circuit



(2) Analog Switch Circuit (G_V=0dB Voltage Follower Amp)

*Resistance(**) is Pull-up resistance for pervent from switching terminal going ON by reakage of external circuit(TR...etc).

■ SWITCHING MECHANISM

Switching Mechanism of NJM2121 is as follows.

Switch signal is communicated in case that V_F of Q26 goes ON on current mirror which is composed with Q26 and Q27.Q10 goes ON by 4diodes of Q10 in case that terminal 1 goes OFF and Amp (ch A) goes active.Q9 goes ON by 6 diodes of Q9 in case that terminal 1 goes ON and Amp (ch B) goes active.So,NJM2121 have merit that drive system is controlled freely. Because drive system is not related to supply voltage system (Single supply type/Two supply type) in order that switch change by current ON/OFF.

But, this switch goes ON by very little current because of signal communicate system which depend on ON of V_F . So, please use NJM2121 under the condition of lowering sensitivity for current ON/OFF by external Pull-up-resistance (R_p)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices:

NJM2121D NJM2121M